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The variational conditions for the orbitals of general multiconfigurational SCF 
wave functions are coupled in a unique way to construct a one-electron 
Hamiltonian with which one can determine all the occupied orbitals. Proper-  
ties and application of the one-electron Hamiltonian in the relativistic 
framework are also discussed. 
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1. Introduction 

Since the pioneering work of Roothaan on the open shell self consistent field 
(SCF) theory [1], attempts have been made to construct one-electron Hamil- 
tonians for general open shell and multiconfigurational (MC) SCF wave functions 
[2-10]. Construction of a single, one-electron Hamiltonian is important not only 
because it simplifies the calculations but also for applications to formal problems. 
For instance, one wants a single, one-electron Hamiltonian, if one uses the 
M011er-Plessett type separation of the N-electron Hamiltonian in the pertur- 
bation theory of electron correlation [11]. The one-electron Hamiltonian 
approach was particularly successful in single configuration closed and open shell 
SCF calculations. However,  especially in the MC SCF case, convergence is not 
easily obtained, and several ways to accelerate the convergence have been 
proposed [3, 9, 12]. 

Huzinaga [5] and Hirao [6] gave a synthetic approach to the open shell and MC 
SCF problem. They decoupled the set of coupled Euler  equations for orbital shells 
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with the use of projection operators, and transformed them into a single pseudo- 
secular equation. In a series of papers, Adams developed an elegant orbital SCF 
theory and constructed a natural orbital Hamiltonian for MC SCF wave functions 
[8]. The theory has been extended to construct a one-electron Hamiltonian for the 
orbitals of the fully general class of MC SCF wave functions and has been applied 
to MC SCF calculations of excited states of atoms and molecules [9]. 

In the next section, a prescription is given for constructing a one-electron 
Hamiltonian with which one can determine all the occupied orbitals of general 
MC functions. We start with a general form of the total energy expression. It has 
no restrictions on the configurational form of the total wave function, and is 
applicable to excited states as well as ground states. In the last section, we discuss 
the property of our one-electron Hamiltonian in the quasi- and fully relativistic 
SCF framework, and compare with the one-electron Hamiltonians previously 
given. 

2. Theory 

In the MC SCF theory, the total wave function is determined by making the 
energy stationary with respect to the orbitals and with respect to the configuration 
expansion coefficients. The variation of the expansion coefficients and the varia- 
tion of the orbitals are independent only in the first order. Second order coupling 
effects, which are important for the SCF convergence especially in excited state 
calculations [13], will not be discussed in this article. The variation of the 
expansion coefficients leads to the well-known CI equation. Here  we focus on the 
first order  variation of the orbitals and on the construction of a one-electron 
Hamiltonian for general MC SCF wave functions 

We start with a molecular N-electron Hamiltonian which is taken as the sum of 
one-electron operators and two electron interaction terms. The general MC 
energy functional for the M ( M -  >N)  orthonormal occupied orbitals can be 
expressed as: 

M M 

E =  Y~ 'yo-(4~i1/'7,14,~)+�89 Y~ Fq, kZ" (~bk(1)&,(2)l~121&~(1)~bi(2)) 
i , j= 1 i,j,k,1 

= tr ( /~)  +�89 tr (~12F). (1) 

The ~ and F are the one and two electron density matrices [14] and they are given 
a s :  

M 

= E 14,i)3,1s(6sl, 
i.j (2) 
M 

F= E ]r kl(fbk(l')dPl(2')l. 
i,i,k,l 

It should be understood that the averaging over sublevels or levels is incorporated 
in Y~i and Fq, kt. 
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Conditions that the orthonormal orbitals must satisfy in order to make the energy 
stationary, can be derived by the orthogonality constrained variation [7-9]. It is 
expressed in a compact form by the fundamental invariant fi = y,/M [(~i)((~i] : 

I&b,) =/x �9 {(1 - fi)rhf3 + ~rhfi}l~bi), (3) 

where the constant/x is infinitesimally small, and rfi is arbitrary except for the 
condition (firh~)* = -(/3the), which guarantees the orthonormality of the occupied 
orbitals. 

Substitution of the above equation in the energy functional (1) gives rise to the two 
conditions [8, 9] 

(1 -fi)[gfi = 0, (4a) 

fi(_~-F*)fi = 0, (4b) 

where 

P = I;,p + d, P* O* 

with 

M 

O = 2 F;;,k," (4~,(2)I~3~214~;(2))14,e(1))(~k(l')]. 
ijkl 

Conditions (4a) and (4b) may be expressed in a more familiar form: 

(x~ IPlxo) = 0, (5a) 

(z0,1P-PIz0> =0, (Sb) 

where X0, %0' are any linear combinations of occupied orbitals and h'v is any linear 
combination of virtual orbitals. McWeeny [7] and Hirao [6] arrived at the correct 
variational conditions analogous to (5a, b), but in more restricted form. 

Both (4a) and (4b) (or (5a) and (5b)) must be satisfied for the energy functional to 
be stationary with respect to the mixing of occupied with virtual orbitals and of 
occupied orbitals among themselves. We have given one prescription for translat- 
ing the two conditions into a pseudoeigenvalue equation [9]. The construction of 
open shell and MC SCF Hamiltonians [8, 9] was guided by the following idea: The 
one-electron Hamiltonian is defined so, that it differs from the closed shell 
restricted Fock operator only as much as is essential, and that the resultant orbitals 
still satisfy conditions (4a) and (4b). 

In the present article, we present a simpler and unique prescription: 

The two conditions (4a) and (4b) can be easily coupled together to the form 

/~o = (1 -f i)Ffi  + Afi(F-P*)fi  = 0. 

where A is an arbitrary non-zero complex constant. This is not a desirable form of 
the Hamiltonian as it is not Hermitian in general. A Hermitian form of the 
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Hamiltonian can be derived by averaging over its Hermitian conjugate: 

/~ =/~o +/~*o = (1 -t~)ff'~ + t~ff'* (1 -t~) + ia~(P -pt)fi, (6) 

where a = i(a* - a )  is a nonzero real number. The third term in Eq. (6) is indeed 
Hermitian since ~3 ( F - p t ) ~  is antihermitian and i �9 a is purely imaginary. 

One can easily show that the resultant orbitals of the equation/~ = 0 satisfy both 
(5a) and (5b). Conditions (5a) and (5b), and the resultant equat ion/~ = 0, in 
general do not provide means of distinguishing individual occupied or individual 
virtual orbitals [5, 6, 8]. They simply determine the occupied and virtual manifold. 
Individual orbitals must then be chosen by a new set of conditions. These 
conditions must be sufficient to guarantee that both (5a) and (5b) are satisfied, but 
what the conditions are is a matter of taste. 

In the case of the single Slater determinant approximation the energy functional 
and the operators ~6 and/~ are invariant to linear unitary transformations within 
the occupied space. In such a case, the additional condition to determine indivi- 
dual occupied orbitals may be given in general as [15] 

M 

i 

where ~o is an arbitrary Hermitian one-electron operator. Similarly we can 
employ the Hermitian operator (1-/~)~v(1 -/~) for selecting the virtual orbitals 
[16]. Then the additional conditions to determine individual occupied and virtual 
orbitals may be given as 

M 

TSDI~b,} = E oJ,,l~b,), (7) 

where 

= ogZop + (1 - T S D  A ^ ,, 

For a general MCwave  function, a full set of Slater determinants is almost never 
used, and E and _R are invariant under restricted sets of orbital transformations in 
the occupied space. Such orbital sets can be characterized by the projectors [6] 

= 1,r162 
i~I  

The fundamental invariant/J may then be given in terms of the/~z's as 

I 

In terms of these projectors, a new set of conditions for determining individual 
MC SCF orbitals can be written as 

'TIq~,) = Y. o~ji" I(bj), i ~ / ,  (7a) 
j e I  

where 

= E fio , + (1 -  )fiv (1 - p ) .  
I 
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Here the Hermitian one-electron operator fi0 must be chosen so that it is invariant 
to the set of orbital transformations. The choice ~t0 = �89 +/~*) provides such an 
example. The fi0 and fly operators can also be regarded as generalized forms of 
the level shifting operators [17], which help the SCF iteration to converge [12]. 
With level shifting one can in principle optimize each orbital pair mixing, but 
(what has often been overlooked) one can in no way take into account the coupling 
among different pairs nor the coupling of orbital mixing with CI-coefficient 
variation. These effects have to be accounted for in order to guarantee (quadratic) 
convergence as e.g. in the methods of Das etal., Schwarz and Chang, or Dalgaard 
[13]. 

Adding the equations/~--0 and (7 a) together, one obtains 

(/~ + 7~)1~,> = E ojil~j>. (8) 

Since the one-electron Hamiltonian (/~ + 7") is invariant to unitary trans- 
formations within the set I, the Hermitian matrix wjl can be brought to diagonal 
form and we now arrive at the pseudoeigenvalue equation of the general MC SCF 
theory: 

[ (/~ --~ r)]~i) = r162 (9) 

It is easy to verify that the resultant orbitals of Eq. (9) satisfy (5a) and (5b). 
Following the method suggested by Adams [9], we can also verify that the 
MC SCF Hamiltonian (R + T) is defined so that the orbitals, which satisfy the Eq. (9), 
are the ones used to construct the Hamiltonian. 

Our theory is presented with no restrictions on the type of configurations in the 
expansion of the total wave functions and the formalism is applicable to MC SCF 
calculations of the general class of ground and excited states of polyatomic 
molecules. 

3. Discussion 

Our one-electron Hamiltonian is intrinsically complex (see Eq. 6) and this 
property will be discussed in relation to the non-relativistic and relativistic 
N-electron Hamiltonian. 

In the non-relativistic case and in the absence of external magnetic fields, 
l~= V+~2/2m and 912= 1/ri2 are employed for the one and two electron 
operators. The N-electron Hamiltonian is then real: H*  = H, or [H, C] = 0. C is 
the complex conjugation operator, which is associated with time reversal. It 
follows that ~p and C~p are simultaneously eigenfunctions of H to the same energy 
Therefore the eigenfunctions can be chosen purely real (#t + CO, or i �9 (0 - CO)). 
This guarantees that the momentum vanishes, (/3) = 0, as it must be for stationary 
states [19]. 
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If we use a linear space of trial functions, which is invariant under C, the optimized 
variational function ~h can be chosen purely real, too [18]. On the other hand, the 
energy-optimized Hartree-Fock function (whether unrestricted, spatially sym- 
metry-restricted, or extended) is not necessarily real [19], because the space of 
HF-functions is nonlinear. Nevertheless it is sensible, both for computational 
simplicity and for symmetry reasons ((/~)= 0), to introduce the real-constraint 
[F, C] = 0 in non-relativistic Hartree-Fock theory. Therefore the introduction of 
the operator/~ (Eq. 6), which is in general complex even in a real basis set, might 
at first seem unreasonable. 

In the relativistic case, the Dirac one-electron Hamiltonian/~D in its standard 
representation 

f~D = V + c ~  + c2~m, 

and 1312 = 1/r12 are usually chosen. For the quasi-relativistic case,/~ may be chosen 
to be of the Pauli form: 

f*e = V +p2/2m +I~,, + f~o +/~so, 

where /~v,,, /~D and /~s0 represent velocity-mass, Darwin and spin-orbit terms, 
respectively, or its model potential equivalents [20]. 

In the quasi- and full relativistic cases, time-reversal is now associated with the 
Kramers operator K = -io'yC: [H, K] = 0 [21]. Then eigenfunctions �9 of H are 
degenerate with K ~ ;  but one cannot form a purely real linear combination of 
them. The exact eigenfunctions, and also any reasonable approximations, are 
intrinsically complex. Instead of IF, C] = 0, IF, K]  = 0 is now a reasonable con- 
straint. The introduction of the complex operator in the one-electron Hamil- 
tonian (6) in order to unify Eqs. (5a, 5b) represents no additional complication in 
the relativistic case. 

Although the relativistic Hamiltonian is complex, this is not necessarily true for its 
matrix representation. E.g. in the basis of its own eigenfunctions, the HF-equation 
has a purely real representation. However, of practical importance is whether we 
can find a set of basis functions before any diagonalization, only by taking 
advantage of the symmetry properties of the system. Furthermore, this basis 
should yield real matrix elements for all the different terms in the Hamiltonian. 
Such a basis indeed exists for systems of high symmetry such as atoms [21] and 
linear molecules [22], the basis being given by: 

(fn " xljm~ and (ifn 
.Oxljm ) ' 

0 / 
where Xtim are two-component spinors all referring to the same coordinate 
system, and fn are radial AOs. In the case of polyatomic molecules of low 
symmetry, however, it does not seem possible to find general basis sets, which 
simultaneously yield real S-, V- and ~ -ma t r i x  elements. 

Closely related to the present formulation are the open shell and MC SCF theories 
by Huzinaga [5] and Hirao [6]. Test calculations [6, 23] using such a construction 
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of the one-electron Hamiltonian have been performed within the open shell 
framework, and the convergence has been found satisfactory. The definition of 
the one-electron Hamiltonian by Hirao and Carbo et al. [6] for the case of MC 
SCF orbitals is quite complicated, and makes the construction of the Hamiltonian 
rather difficult in practical applications. The generalized MC SCF theory of 
Adams et al. [9] uses the orthogonality constrained variation to arrive at the 
conditions (4a) and (4b). The one-electron Hamiltonian is then constructed in 
such a manner that it differs from the closed shell Hartree-Fock Hamiltonian only 
as much as is essential. It also involves a more complicated construction of the 
one-electron Hamiltonian. 

Our one-electron Hamiltonian given in the preceeding section has no practical 
advantage over other one-electron Hamiltonians [1-9] with regard to the 
convergence properties. Our operator as well as others proposed are derived solely 
from the "First order" variation of energy. Applications of various one-electron 
Hamiltonian methods have been demonstrated in the openshell and MC SCF 
frameworks [6, 8-10, 23]. When these one-electron Hamiltonians give convergence 
difficulties, then our operator would be plagued with convergence difficulties as well. 

In the present article, the conditions (4a) and (4b) have been coupled to form 
the one-electron Hamiltonian in a unique way, keeping the structure of the 
Hamiltonian as simple as possible. The method we used to couple the two 
conditions is essentially an extension of the method due to Huzinaga [5]. The 
general MC SCF theory presented here may then be viewed as a generalization of 
his open shell and MC SCF theories [5]. 

Applications of the present MC SCF formalism to relativistic model potential 
calculations for molecular systems are under way. 
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